Because of its properties, it serves as a good thermal conductor and as an important alloying element in the production of structural and stainless steel. It has a high ability to resist corrosion and to hold shape even when subjected to high temperatures.
The most common among the Molybdenum and Alloys is the titanium-zirconium-molybdenum alloy (TZM), which is a blend of 0.5% titanium and 0.08% of zirconium, and about 90% molybdenum. This alloy exhibits strength even at very high temperatures, making it the perfect alloy for casting zinc.
Among the refractory metals, molybdenum is the most commonly used. Its most popular application is as a strengthening alloy in the production of steel. Molybdenum alloys are usually found in the form of coils, sheets, rods or bars. These materials are commonly used to manufacture steel, cast iron, and other engineered products used in the automotive, stainless steel production, shipbuilding, aircraft and aerospace and other specialty industries.
Molybdenum Alloys have very high strength and stay stable even at a temperature as high as 1900°C. Such uniqueness contributes to the use of molybdenum alloys in furnaces used to melt glass, in the manufacture of X-ray anodes used for diagnostics, and in other high-temperature heating elements.
Moly is also alloyed with other metals such as tungsten (symbol W), copper (symbol Cu) and rhenium (symbol Re). Mo-W alloys are used for stirrers, piping and pump impellers because of their high resistance against molten zinc. Mo-Cu alloys are used for applications requiring high conductivity, such as the production of electronic circuit boards. Mo-Re alloys are noted for their ductility and are used for rocket engine parts.
Titanium is considered the most biocompatible metal – not harmful or toxic to living tissue – due to its resistance to corrosion from bodily fluids. This ability to withstand the harsh bodily environment is a result of the protective oxide film that forms naturally in the presence of oxygen.
Its ability to physically bond with bone also gives titanium an advantage over other materials that require the use of an adhesive to remain attached. Titanium implants last longer, and much larger forces are required to break the bonds that join them to the body compared with their alternatives.